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ABSTRACT

The Wyngaard and LeMone (1980) model of interfacial
turbulence structure functions (temperature, CT2, and water
vapor, Coz) in an entraining mixed-layer is analyzed. The
model indicates that in the interfacial region (2 ¥ 2;) Cx?
is proportional to (AX)2 z;-2/3 6,4/A0,, where
X =T or Q, AX is the jump in X across the interface, Z; is the
height. of the interface, and 6, is the convective mixed-layer
scaling parameter for temperature. Although based on a number of
assumptions (referred to as the "quasi-steady" approximation), the
model is found to have more general application. A theoretical
analysis indicated that the model might not apply where AQy is
large (on the order of 10 K), particularly for CTZ. A
comparison against 23 aircraft profile measurements revealed that

the model agreed within a factor of three.
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Figure 1. Schematic representation of the convective boundary
layer (taken from Wyngaard and LeMone, 1980) with its
interfacial layer showing h,, Zj, hy, Ah, fluxes

. and jumps. Note that A0, = Oy(hj) - 0Oy(hy)
. is positive while AQ is negative.

Figure 2a. Comparison of measured inversion layer structure
function, Cp2, versus WL theory. The data points
are indicated by the first letter (P,W,M,B) of the
experiment..

Figure 2b. Similar to Fig. 2a but for Cq2.

Figure 3. Theoretical expression for Hp and Hg (Eq. 68)
illustrating the difference between the dependence of
Cp2 and Cp2 on AQ@, and AQ.
T Q v

Figure 4a. A comparison of the measured value of Iy (Eg. 65)
and the theoretical value (Eq. 66) for the
"quasi~-steady" entrainment formula.

Figure 4b. Similar to Fig. 4a but for CqZ2.

Figure Sa. The measured value of Cp2 divided by the WL model
value as a function of AQy.

Figure Sb. Similar to Fig. 5a but for Cqg2.

Figure 6. The measured value of Cp2 divided by the model
value using the simplified expression (Eq. 70).

.-,.,h.mrr,_,.....__. ,
PN P-4 PACAPARNEMAE P4 MMM
L

.




N I INTRODUCTION

NG

~» This report is a theoretical and experimental analysis of a

model (UWyngaard-and ﬁeMone;—fGﬁQ}»used to calculate the refractive
index structure function parameter, Cné, at. the interfacial

region at the top of an entraining, . turbulent mixed layer.

(\Cn% is related to the micrometeoro;egicai structure functions

for temperature, CT%T humidity, QQ%T and T-Q covariance,

~Cqé%’ The mixed layer interfacial region is important for EM
propagation because l,_\Cn?'is greatly increased by large T and @
fluctuations due to gke entrainment. of warm, dry air from the

ri npnturbulent atmosphere above the mixed layer.

Assuming that the rate of entrainment is ih equilibrium with

the free tropospheric virtual potential temperature (buoyancy)

lapse rate, the model indicates that sz is proportional to

(8X)2 8y» Zi‘2/3/A@v where £ is T or Q, AX the jump

at the interface, Z; the height of the poundary layer and

8,+ the convective temperature mixed layer scaling parameter.

" The theoretical basis of this model is examined and four data sets
from the NPS aircraft measurement.s program are used to test the

model.
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II THEORY

A. Background

The structure function parameters for temperature, Cq2,
and specific humidity, CQZ, are to be evaluated in the
inversion region by averaging between heights Z = h, and

Z = hy (see Fig. 1). The complete theory was developed by

summary of the derivation will be presented in this report. 1In a
few instances WL's work will be expanded to make certain
assumptions and manipulations more explicit.

The height hy is defined as the top of the mixed layer
where w8, = 0. At hy both fluxes and flux divergences are

equal to zero. The average structure functions are

2
<Cp2> Ah'lfo cp? az (l1a)

2
<Cq2> Ah'lj; Cq? 4z (1b)

where Ah = hy - hy and the 0, 2 on the integral denotes hos h2o.
Eﬁ' The average structure functions are related to their

respective dissipation rates by the Corrsin equation

«Cp2> = 1.6<€>-l/3<X9> (2a)

v
0

«Cq2> = 1.6<€>"1/3Xy> (2b)
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Wyngaard and LeMone (1980), hereafter referred to as WL, so only a
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where € is the rate of dissipation of turbulent kinetic energy, X
and X are the scalar dissipation rates (the factor 1.6 implies
X 1is the rate of dissipation of temperature variance 37).

B. Evaluation of <X>

For the moment, the development will be confined to the
specific humidity (Q). The dissipation rate is calculated from
the scalar variance budget equation (Q denotes mean while g
denotes fluctuating specific humidity; later in the paper g will

denote mixing ratio, Q/p).
dv/dt + Wdv/dz + d(wq)/dZ + 2 pwq d(Q/p)/dz = -Xq (3)
where v = 57, W is the mean vertical velocity (subsidence) and p
is the density of air. Integrating this equation from h, to
hy, as in Eq. 1, yields
<XQ> = =<Dg> - <Tg> - <PQ> (4)
where D is the first two terms in Eq. 3, T (transport) the third

and P (gradient. production) the fourth. Assuming "quasi-steady"

conditions, WL show that <Dqg> and <Tq> are negligible compared

t.o <PQ>: therefore

= —<PQ> (5)

LW UL S P P .
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At. this point. the generalized inversion structure model

(Deardorff, 1979) is introduced
Q = Qp + 8Q £(2); ho<Z<hy (6a)
aQ/dz = AQ df/dz (6b)

where f(Z) describes the shape of the Q profile in the inversion
region (assumed to be the same for Q and T) with f£(h,) = 0 and
f(hy) =1, Qg is the mixed layer value and 8Q the jump in Q
across the inversion. Substituting Eq. 6b into Egq. 5 and

integrating by parts one obtains

2
-<Pg>Ah = 2 AQ .j. d(wq)/dz £dz (7)
(o]

The mean Q continuity equation

-d(wg)/dz = 4Q/at + W 4Q/dz (8)

is used in Eg. 7 to obtain

2 2
-<Py>4th = -24Q f dQ/dt fdz - 24Q w dQ/dz £ 4z (9)
40 (o}
.- The time derivative of Egq. 6a
»'.2 .
e dQ/dt = dQy/dt + f daQ/dt (10)
L
o L
‘@
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and Eq. 6b can be substituted into Eq. la. First the

"quasi-steady" assumption is invoked, setting the following

conditions
©daQ/dt = 0
dAdy/dt = 0
dh,/dt =0
dAh/dt =0

However, since

dhg/dt = Wy + Wgq
then Eq. llc implies Wy, = -W,. Assuming constant.
divergence
W =Wy Z2/hg

aw/az = Wgy/hg

(lla)
(11b)

(llc)
(114)

(12)

(13a)

(13b)

{13¢)

where a = Ah/ho is the normalized thickness of the interfacial

region. Employing these relations in Eq. 2 and doing the second

integral by parts gives

-<Pq>4th = -24Q h¥q dQy/dt + (8Q) 2Wag (l+a-az,)

where the interfacial functions Yg and 2 are

- PR o . . . .
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]

2
2q Ah‘lj; £2 4z (15b)

The time derivative term in Eq. 14 is eliminated by

integrating the conservation equation (Eq. 10) from hy to h3
AhdQ,/dt - Weo 8Q(1 + @ - aYy) = wqg (16)
which is substituted into Eq. 14 to obtain (WL Eq. 42)
~<Pg>Ah = -28QYq Wqo + (4Q) 2Weo[-2Yq(1l+a-aYq)+(1+0a-02q)] (17)
Later in their paper, WL use the equation
-0Q Weg (1 + a - a¥q) = wag (18)
which, in view of Eq. 14, obviously implies dQ,/dt = 0. Since
WL have already required that dAQ/dt = 0, this solution appears to
be quite restrictive. If Eq. 18 is used in Eq. 17 then
~<Pg>dh = (AQ)2 Wgo (1 + a - aZq) (19)
Despite the simplicity of Eq. 19, WL prefer to keep the wqg
term separate in their development.. The primary reason for this
is to simplify the analagous development. for 4§, since

wlyo = 0. Therefore, WL now employ the "quasi-steady"

entrainment. formula

......
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W, o= 0.8 W S=1/(1+q) (20)
where

S = glg, h3/(W«2T) (21)

with Tgy = dO,/d2 at Z = hp and Wx is the convective

scaling velocity (Z; = hy/0.8)

Wad = g wlyg 2Zi/T (22)
and "s" denotes the surface value.
Rather than make an explicit substitution for Wg, at this

point, one could keep W,, as a variable, giving

<XQ> = -24Q Yq Wqo/(ahg) + (8Q)2 Weg(l+a)SFg/hg (23)
where
Fq = [-2Yq (l1+a-aYq) + (l+a-aZg)l/(a(l+als) (24)

Using the WL solutions obtained for Eq. 24 (and Yq : 1/2)

Fq = (6R)"1 (25)

+hen
<Xg> = -0Q Wgy Yq/(ahg) + (4Q)2Wgeo(1+a)S/(6Rhy) (26)
Where R = g A8y hg/(We2T) (27)

The final result is obtained by substituting for Wwqy in Eq.

26. First the 9, continuity equations at hg and at h) are
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combined with the hg to hy integral form similar to Eq. 16 to

produce the relation

d AG,/dt + Weo Ah(l+a)Tgy = Weo AGy(l+a=-a¥g) = wByo (28)

Since WL assume dA0,/dt = ;Evo = 0,

A@v(1+a-ayQ) = Tgp h(l+a) (29)

Using Eq. 29 and Eq. 18 in Eq. 26, one obtains

Xg> = (8Q)2 Weg (1+0)S(1+671)/ (ngR) (30)

Note that the first term in Eg. 26 (which was proportional to

Gab) is six times as large as the second term (WL obtain 15/2

- for this ratio because they use two separate formulae for We,

which differ by a factor of 4/5, i.e. 6*5/4 = 15/2).
The development for temperature is parallel until the 9,,
equation analagous to Eq. 26 is reached. Since ;EQO = 0, the

final result is

Xg> = (88y)2(1+a)Wgg S/(6RNG) (31a)
C

<Xq> = 7(8Q)2(1+0)Weq S/(6RN,) (31b)
PQ C. Structure Functions

j! The final step in this process is to specify that <€> is one
- 3

L4
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half the value typically found at 2j under convective conditions

<€»1/3 = (0.2)1/3 W zi-l/3 (32)
Assuming the "gquasi-steady" entrainment. rate, the structure
functions become
<C2> = 3.9(8q)2 0,/ (2;2/340,) (33a)
<Cpy2> = 0.580, 6./2;2/3 (33b)
where 8,+« = W8, g/Wa. The virtual temperature structure
function is related to the temperature structure function,
cth by
<CT2> =27 <Cpd>/ 00y (34)
where T; is the function given by WL.
One point worth more discussion is the approximation
Fq = (6R)~l and the final forms of Eq. 3l. Suppose the
results of Eq. 19 were used and a different function defined
<XQ> = (8Q)2Wgg(l+a) S Gg/hg (35a)
(35b)

<Xg> = (80y)2Wgg(l+a) S Fo/hg

where Fg remains as per Eq. 19 but

-

---------




G, = (1+- azq)/(a(l4a)s) (36)

Using Eq. 29 one can show

Fq = g - 2¥g/R (37)

Following the calculations WL have in their Appendix A, a,
Fqy and Gg are unique function of R/S (providing the mixed
layer gradient is zero). Gy is considerably less variable than
Fo. The following formula are reasonable approximations for

0.1<R/S<10

a = 0.96 R/S - 0.11 (R/s)Ll.5 (38a)
Gg = (1 + 0.064 VR/S)R-1 (38b)
Fq = (1 + 0.28 VR/s)R"1/6 (38¢)

These formulae lead to slight modifications to the structure

function equations
«Cp$> = 0.57 (A6y) oy#Dp/232/3 (39b)

where Dp = 1 + 0.22 VR/S.

10
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The equations for CQ2 and Cp2 can be written in

various general forms (now dropping the bracket notation)
Cx2/((8X)2DgEy) = 1.14 0 ,4/(80,2;2/3) (40)

or, without substituting explicitly for W,, and €

0.53(1+a) IWeq

Cx2/((8X) 2DxEy) = (41)
Aev <e>l/3
where Dy = 1, Eq = 3, and
Ep = T;/49, (42)

D. Discussion

It is of interest to ponder the significance of the various
"quasi-steady"” assumptions (Eq. 11, 12, 13). Suppose we exhume
the original conservation equation integrals from Deardorff's (1979)

paper (his Eq. 18 and 21). Assuming only horizontal homogeneity

and constant divergence, the general equations become

b
r_-'

3

L ——

o Ah dQg/dt + AhYq dAQ/de - AQL(1 - Yg) Wep + YgiWeol = wyg (43a)
“{

£ bn dO,,/dt + AhY, dAO,/dt - A0,[(1 - Yq) Wap + Yg Weol = 0 (43b)
L

-
.
.
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Thus Eq 16 and the 6, analogue can be reproduced by requiring
We2 = (1 + a) Weq (44a)
diQ/dt = d4b,/dat = 0 (44b)

It is not necessary to require Wy = -W, dhg,/dt = dhy/dt =dfh/dt = 0.
This explains why WL found excellent agreement with Aschurch data
where W = 0 and Wgg * 10 cm/s.

Similarly, the general forms for the dissipation integrals

are

-<Pg>dh = -24h AQYndQ,/dt - 28hZgAQdAQ/4t

+(8Q)2[(1 - 2q) Wep + Zgigo] (45a)

-<Pg>bh = 26hA0, (Yg2 - Zg) dA8, /4t
+ (88y)2[-2¥gl(1 - Y,) Wez + Yg Weol (45b)

+ (1 = 2q) Wea + 2q Wepl
which reduce to Eq 14 if the conditions of Eq 44 are met.
Since entrainment. and surface flux tend to counteract each
other in the Q case, it seems quite reasonable to assume that the
dAQ/dt. and dQ,/dt terms are negligible in Eq 45a

=<Pg>th = ()2 [(1 - 2g) We2 *+ 2Zg Weol (46)

Instead of making the assumption Eq 44a, suppose we simply assume

. - - L . - - >
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wez = weo = G'WVS/AGV (47)

which is the standard cloud-free result from Lilly (1968) where

typically « = 0.2. Then one can easily show that

which is identical to the WL result as expressed in Eq. 3%9al! 1In
other words, the combination of "quasi-steady" assumptions
We2 = (1 + a)Wey and Wep = Whyg/(Igh,) are
equivalent to the assumptions of Eq. 47 even though they may imply
vastly different entrainment rates.

If one uses the assumptions of Eq. 47 and parallels the WL

development, then the equivalent to Eqg. 18 is
Wdg = - AQ Weg (49)
and the equilibrium condition form the 8, equation is
WByo = Weo (ahgly - 40y) (50)
which, assuming'ugvo = (0, gives
a = R/S (51)

The results for 8, are also interesting because it is not

clear that the dA@v/dt term should be negligible compared tc the

Al o oo o N N o . N
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other terms in Eq 46 b. Suppose we let

-<P6>Ah = A + B (52)

Then the dA0,/dt term is small 1f A/B is small (returning to the

"quasi-steady" format)

ho(Yg2 - 2g) dA8,/dt 6(R/S) (53)

A/B =
80, (1 + a) Weq

Since YQ2 - 2g ® -0.1, we can write

-0.6 hy(R/S) dAg,/dt

4
) W Eo, (54)

A/B =

The magnitude of A/B can be examined by using the general

relation
d40y/at. = -d65/dt + TgWaea (55)

ll)

and writing a simple entrainment formula (e.g. "quasi-steady

The integral of the conservation equation from 2 = 0 to Z = hy gives

—
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hgo d@vo/dt = w_evS + Wevov (57)

therefore
dAf,, /dt = = WegoAGV/hg (58)
using Eq. 54 we find
A/B = 2% R/s (59)
(1+a)

A good example is the Aschurch data quoted by WL where Eq. 57
was shown to be applicable. Since R/S = 0.3 for that data, A/B =
0.15 and dA@,/dt is negligible.

Certainly the conditions set by WL are consistent. with
neglecting dA@,/dt.. It is not clear how to identify conditions
where this assumption is invalid. Eq. 54 cannot provide much
guidance because it is based on solutions to Eq. 28 with
dAev/dt = 0. It is interesting that in the conditions where the
WL equations for "quasi-steady" entrainment are expected to
breakdown (A9, large, R/S >1) then the Lilly type relations give
the same results for Cq2. If the dA@,/dt term becomes

important.,, then one anticipates the WL formulation will

underestimate CT2°




III ATMOSPHERIC DATA

A. Measurement Techniques

The measurements were ade using a single engine Bellanca
Viking aircraft operated by Airborne Research Associates of
Weston, MA. The instrumentation and data processing have been
previously described in detail (Fairall et.. al., 1980; Schacher
et.. al., 1980) so only a brief summary is given here.

i) Mean temperature, T: platinum resistance sensor with

standard aircraft mount.

ii) Mean humidity, Q: cooled mirror dew cell.

iii) Mean windspeed, U: estimated at the surface from the

sea state and DMV navigational aid. The present. LORAN system

was not available.

iv) Sea surface temperature, Tg: Barnes PRT-5 IR
radiometer.
v) Cp2: microthermal senscrs (4.5 um dia. tungsten)

in the paired configuration.
vi) Cozz Lyman-alpha fast humidiometers using the
inertial subrange filter method. Absoclute calibration based
on comparison with a microwave refractometer.
o vii) €: hot wire (4.5 um dia. tungsten) constant
temperature anemometer. The inertial subrange filter method
< was used.
o B. Surface Fluxes and Turbulence Scaling Parameters
Surface fluxes were evaluated from aircraft measurements
using two methods: a) bulk aerodynamic and ») dissipation

(inertial subrange). The fluxes are defined in terms of the
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following scaling parameters:

momentums dE;s = —puxl (60a)
sensible heat: pCp WBg = =pCp u#Tw (60Db)
moisture: PqQWg = =puU*qs (60c)

The momentum flux is also referred to as the Reynolds stress, T.
Note: the bulk method was not used overland.

1. Bulk aerodynamic method.

The exact
et al, 1981).
values of some
wind speed) at.

surface layer,

details were described in a recent paper (Davidson
Using Eq. 4a from that paper, one can relate the
met.eorological variable (temperature, moisture or
the sea surfce, X5, and at some height 2 in the

X5+, to the scaling parameter, X:

us = uzk[en (2/2¢) - ¥, (z2/L)]1"1 (61a)
T« = (T, = Tg) 8klin (2/25p) - ¥p (2/L)]71 (61b)
qr = (g, - qg) 8k [n (2/257p) - ¥p (2/L)1°1 (61c)

where Z, and 257 are roughness lengths, L is the Monin-Obukhov

length, 8 and k are constants, and Y, and Y% are empirical

functions.




2. Dissipation method.
The dissipation method relies on semi-empirical relationships
of inertial subrange turbulence to surface~layer scaling

parameters (Fairall et al., 1980). The equations are

us = [(ek 2)/¢(2/L)11/3 (62a)
Tw = [22/3 cp2/£(2/L)1L/2 (62b)
Qe = [22/3 cq2/(a £(z/L)1L/2 (62¢)

where ¢ is the dissipation rate, ¢ and f are empirical functions,
and A is a constant. Because the structure-function parameters
CT2 and CQ2 are related to the square of the scaling

parameter, a sign ambiguity exists. This can usually be
eliminated by examining the low=-level height dependence of €,

CQ2 and CT2 because the functions ¢ and f have

characteristic profiles for stable and unstable conditions.

Laj Both methods yield accuracies on the order of 10% for ux,
= +0.02°C for T+ and +0.02 g/m3 for Q% (note: g*x = Qx/0).
2
B C. Data Sets
- The data given 1in thls report were octained in four field
- programs:
'S
& i) Panama City (PC), 1978 (more detail available in

' Fairall, 1979) over the Gulf of Mexico 1in Florida.

ii) White Sands (WS), 1979, Two profilass over the desert

® ‘ . .
F“ under highly convective daytime conditions.
I 15
F‘f'_':
s
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iii) MAGAT (MG), 1980 (more detail available in Fairall,
1980) in the Monterey Bay area.

iv) Bahamas (BH), 1980. A series of profiles taken near
Andros Island in the late fall.

The complete data sets were examined to remove profiles that
encountered boundary-layer clouds. A total of 23 profiles were
selected. Graphs of the mean and turbulence profiles for each
case are given in Appendix A. A summary of the basic scaling

parameters is given in Table 1.
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TABLE 1.

Meteorological data and surface scaling parameters
from the cloud free NPS data sets.

| # |site | pate | Time Ju, T, g, 125 Jney Jao | o |lra |
L | i Ims™Hx  lgkg7llkm |k |gm™3| | Kkm™Y
R S AN AN N AN AU SN A S S S
| 11pc J11/26|l1252 ) .40]-.082J-.16 | .85] » {-6.5| .4| 5.5|
| 2)pc  |11/26} 1436} .23 |-.095-.16 | .90} .5}-2.3| .1| 5.3]
| 3{pc |12/2)1405) .24 )-.14)-.18 | .23 4 | -.5] .7| 4.6}
| 4lpc J12/10] 1324 ] .38{-.35] o | 9 6 }-~1 | .35810 |
| sipc |12/10 1410 | .32 | -.49|-.49 | 7sf .3 |-1 | .1is{11 |
| 6 jpc |12/10 1523 | .34 |-.48|-.48 | gs| 3 |-1.3] .25011 |
| 71lpc J12/10 1637 | .34} -.49]-.50 | 1.2} 3 J-3 | .1}17.5]
| 8|lpc |12/11}1021 | .28}-.44}-.43 | .7} 3 }~-r | .5] 9.5]
| 9lpc {12/13[ 1154 | .19}0.21|-.47 | .6| 1.5] .2| .35010 |
|10 |pc J12/131459|.27)-.20)-.42 | .5| .sf-2 | .4f{11 |
}11 |ws J10/174 1330} .47)-.42) o J 1.1} 1.5]-2.5} .1] 3.0|
|12 |ws J10/18 1330 .47}-.42) o | 1.9} 1.5}|-2.5] .1] 3.3]
{13 {mMc | 4/30| 1610 | .28 |-.078/ -.11 | .36 6.5} ~4.5] .35f 9 |
|14 |Mc | 5/4 1024 | .21 |-.085-.11 | 3611 | ~5.2] .4]10 |
}15 |Mmc | s5/4)1201] .30 -.0750-.12 | .46l 9 |-5.2| .5]15 |
|16 |Mmc | 5/4]1244] .30 )-.075)-.12 | .54 9 J-5 | .2}15 |
{17{mMm¢ | 5/7]|1043 ) .41 }~.04]-.05 | .23} 72 }-2 | .s5] 9 |
18 {BH | 12/12| 1414 ] .15}{-.16|-.27 | .5} 1 [|-2.5] 2| 5 |
| 19 | | 12/13{ 1540 | .33 {~.30|-.39 | .e5l 0o | ol 21| 4.8]
|20 )88 |12/14} 1330} .23 }-.17|-.27 | .90} 2.5|-8.5}| .15l &.3|
{21 {88 J12/15/1333}.20)~.16}-.26 | 1.5} 3.5}-9 | .15} 5.5
{22 |8 |12/15( 1347} .20}-.26{=~.26 | 1.5] 3.5}-9 | .3} 5.5}
|23 {8 | 12/15{ 1637} .14 |~.14}{~.25 | 1.1 | 1 {-4.5| .4} 6.3]
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Iv. RESULTS

A summary of the secondary scaling parameters used for the
NPS data set is given in Table 2. Also shown in Table 2 is a
comparison of the measured and model assumed values for € at the
inversion. With very few exceptions, the model assumption (Eq.
32) is very good. The entrainment velocities calculated from the
"quasi-steady"” assumption used by WL (Egq. 20) and the more

conventional parameterization of Lilly (1968).

Weo/W* = 0.2 ev*/AoV (63)

are also calculated.
In Table 3 are the measured values of Cp2 and CQ2 at

the inversion plus their normalized forms

Ix =2;2/3 c42/((8xX)2 Dy Fy) (64)

taken from Eq. 40. According to WL (Eq. 26), the theoretical

value is

Ic = 1.14 ev*/Aev (65)

which is the same for T and Q.

A direct comparison of measured and calculated values of
CT2 and CQ2 is given in Fig. 2. The mcdel predicts the
measurements within a factor of three. The uncertainty is

slightly greater than the factor of two suggested by WL but




Table 2.

Surface scaling (Wdyg and L), convective scaling
(We, 8y» and €;) and inversion scaling (R, S

and W.,) parameters. Two formulae are used to
estimate Wgo: “steady" is Eq 20 and "Lilly" is Eq

64.
f# {we, | » | W}_J_ R | s |r/s| <€i>l/3J ‘Neo | B |
I Jkmsq m Jms™ | | I w3 Y enst | k|
l | | | | l I lmeas|ca1c|Steady|Lillﬂ |
|1 | .o44] -125)1.1 | 33| 103] .32| .063| .066| .81 .s8 .04 |
| 2 | .028l- 50 .93 16| 160 .1 | .096| .054 .65 1.1 .03 |
| 3 | .o40l- 29 .64 67 183.7|.10].063 2.7] .21 .06]|
4 | .13]-341.6] 70 105 .67 .074]f .095 1.3] .43| .081]
|s | .19]-1sj1.7] 25 70l .36l .073) .11} 2.4] 1.3} .11]
le | .19l-171.7] 29 90f .32 .084 .11 | 2.0 1.3}.11}
l7 | .20)-16l1.9) 30 190] .16] .0720 .11 | 1.2 1.3].11}|
|8 | .14|-241.5]| 30 65| .46] .11} .096¢] 1.7] .93] .093|
9 | .osel - 101.0] 29 82 .35| .063| .072 .8 .74l .05¢
| 10| .o048 - 9 .92 10l 10s| .10| .10 | .069| .750 1.9 .053
11| .20]-45/1.9] 14 32} .44} .11).11] e6.6] 2.7} .11
12| .20)l-4s5{2.31 17 73] .24 .21 ).112| 3.4] 2.7 .087
13 .027/- 70 .e5] 110l 77 2.2 ] .13 | .056| .84] .og .042|
| 14| .022] - 38 .6 | 110 84/ 3.7 | .046] .053| .59 .04{ .037|
15| .02 ]-120] .7] 250 170/1.5 | .087 .051 .39 .04 .029
| 16 | .02 | -120] .75] 280 170| 1.6 | .046] .051) .24}  .o4| .027
17| .02 |-300] .5] 2000 54/ 3.7 .063 .051 .89 .06l .04 |
| 18] .03 }-9.5] .79l 26| 63 .4 .040| .059 96| .6 | .038
|19 .12 |- 271.37 of 36l o} .10}.093 3.1] | .oss|
| 20 | .049 - 22)1.12| 60l 134f .45| .084| .072| 91 .4 044
| 20 | .039} - 171 1.24f 110] 265l .42} .055| .063| .48 .22 .032
| 22 | .o039/ - 174 1.24] 110l 265 .42} .11 ] .063] 450 .22) .032
[ 23| .024f - 10| .95l 40l 280f .14 .04d .063| .31 .49 .025]
22
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Table 3.

Ix = 232/3 cx2/((8x)2 Dx Fx)where X=T .
or Q ''hese are compared with theoretical values, I..
using the "steady" and "Lilly" entrainment values.

Measured values of the interfacial structure functions
(Cp2 and Cg?) and their resultant values for

l# | «c2>| <«8> | pgpl Eql 1ol | % (Theory) | In/io | L,/5 |
L 1%/ (an™3)%m™%/3 | | | | steadyl Lilly | | |
L1 mMEas | 10 | l | 1 | | I |
[1 | .3 {1.12] 8.1 .003 | | .048 | .048 | .065 | |
{2 | 5.6 | f1.07l 5.1} .396 | | .068 | .11 | 5.7 | |
|3 ] s | |1.42] .58 .014 | { .017 | .oo013] .82 | |
|4 | 12 | |1.18] .61} .044 | ] .o15 | .005| 2.9 | |
|5 | 11 | J1.13] .73 .135 | | .042 | .0023] 3.1 | |
e | 5.7 | ]1.12] .80 .064 | | 042 | .027| 1.5 | |
7 | o | }1.09} 1.23] .079 | | .042 | .046 ] 1.9 | |
|s | a3 | J1.15] .73} .45 | | .035 | .o19)13 | |
l9 | 6.1 | f1.13 1.5 .12 | | .043 | .040]| 2.8 | |
3.4 | l|1.07 4.4 .18 | | .12 | .30 | 1.5 | |

9.2 | J1.15] 1.8} .22 | | .084 | .034] 2.6 | |

3 | f1.11) 1.8} .10 | | .066 | .o052| 1.5 | |

2.5 | 3.9 f1.33 1 | .0023] .0033 .0074| .c007f .31 | .45 |

1.3 | 2 11.42] .83] .0005 .0012} .0038 | .c003f .13 | .33 |

10 | 9.8 {1.27] .90 .0063] .0072| .0037| .oc0o0s| 1.7 | 1.9 |

2.8 | 25 | 1.29] .89 .0020| .022 | .0035| .o006] .57 | 6.3 |

1.7 | 1.6 | 1.42] .69 .0013| .0050f .0065 | .o0004f .20 | .77 |

6.8 | 33 f1.14 2.6f.15 |.11 | .v42 | .026| 3.6 | 2.6 |

6| 3.3 1 | | | | l | 1 |

2.7 | 16 f1.16] 3.6 ] .0093] .0069 .020 | .o09| .47 | .35 |

| 70 [1.150 2.7} | .o38 | .010 | .0042 | 3.8 |

| 16 J1.150 2.7 | .oos87 .010 | .0042| | .87 |

| 55 [1.08 5.0 | .097 | .029 | .ouv4é| | 3.3 |

e o o
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includes various measurement. errors and uncertainties. Note that

the Coz data has a greater range of values than CT2. This

is consistent with the WL model. If we examine the function

H = 212/3 sz/(Dx B yw) (66)
then
Ho = (AQ)2/80 (67b)

A graph of Hp and Hq is shown in Fig. 3 for a typical range of
AOy and AQ from the NPS data set. Note that Hp varies roughly
from 2 to 9 while Hy varies from 4 to 72.

The entrainment parameterization was tested (Fig. 4) by
plotting measured values of Ix(Eq. 65) against the model value
(Eq. 66) which is based on the entrainment formula given by WL
(Eq. 26). This plot gives a much higher correlation than a
similar graph (not shown) using the more traditional formula due

to Lilly (1968), Eq. 62, which gives
Ic' (Lilly) = 0.18 (1+a)T, Zj Byx/(40y)2 (68)

This is not really significant because, when used in proper com-
bination with Eq. 48, the Lilly formulation also leads to Eg. 66.

In order to look for systematic errors, the ratios (Rp and
Rq) of measured to model values of CTZ and Coz were

calculated and plotted against 19, (Fig. 5). A simple
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log-average yields Ry = 1.15 and Rq = 1.3. Figure 53 weakly
suggests that the model underestimates CT2 (large Rp) when

AQ; is small while it overestimates when AQy, is large (the

CQ2 data is too sparse to clear up this question). This could
be due to an error in the estimation of AQ,, and AQ (admittedly
rather subjective). An examination of Fig. 3 suggests that a
reasonable adjustient of AQ, (several tenths K) will not move
the data points substantially closer to the Rp = 1 midline.
Another possibility is that Eq. 20 tends to overestimate Wg,
when AQ,, is large while underestimating for small AQ,,.

Given the considerable scatter in the results, the
uncertainties in the estimation of AQ, and AQ from measured
profiles and the insensitivity of Cp2 to A@, and AQ it is
suggested that a simplified formula for CT2 can be used for
application to radiosonde quality data. If one assumes (based in

Fig. 3) that Hp ~ 5, then

Cp2 =5 8, 2;-2/3 (69)

Based on the NPS data set this approximation appears to be at

least as accurate as the more complicated formula (Fig. 6).
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V  CONCLUSIONS

The Wyngaard-LeMone inversion layer scaling has been examined
theoretically and tested against a data set obtained by NPS
investigators in cooperation with Airborne Research Associates.

The theoretical examination indicated the following:

i) The WL theory is more general than is implied by the
strict assumptions of the "quasi-steady" theory.

ii) The WL development can be simplified slightly, leading
to modest adjustments of the normalization constants.

iii) The steady state assumption that dAQ/dt is negligible is
reasonable under most conditions. The assumption that dA@v/dt
is negligible may not be justified when R/S > 1.

The examination of the atmospheric data indicated the
following:

i) The assumption that € at the inversion is proportional
to a fixed fraction of the surface buoyancy flux was gquite
reasonable.

ii) The WL model predicted the measured value of CTZ and
CQ2 to within a factor of three.

iii) Some evidence, though statistically weak, was found to
suggest the model overestimates the structure functions for large
A0, (> 8K)) while it underestimates for small A0, (< 2ZK). On
the other hand, this could be a manifestation of the Stein effect
for comparison of data sets subject to error where small values
are usually overestimated and large quantities are usually

underestimated.
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Based on these results, it is obvious that a major weakness
of the model is its reliance on an entrainment. formulation that 1is
too restrictive. The two extremes of the buoyancy jump (A6y)
may involve different entrainment regimes (e.g. encroachment,
convective instability or the Lilly formulation). It would also
be useful to include the effect of inversion windshear on Wy and
on the structure functions. Another area of investigation might
be stable surface layers. These may be very important for surface
optical propagation because CT2 values are often sizeable and

2; is usually small (on the order of 100m).
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APPENDIX A

This appendix contains graphs of mean (9,, gq) and
turbulence (Cp2, Cq2, €) profiles for each of 23 data
sets. The site designations are defined in Section III-C. The
abstraction of this data to obtain the relevant parameters (Tables

1, 2, 3 in the main text) is described in Section III.
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